Fermilab **ENERGY** Office of Science

Update on Tritium Management at Fermilab

Chris Greer, PhD Tritium Management Department lead and Tritium Task Force chair Fermilab Community Advisory Board Meeting 23 May 2024

Tritium and Environmental Monitoring at Fermilab

- Fermilab has had an environmental monitoring program for about 50 years.
- In 2005, the program detected for the first time tritium in surface water and in the sanitary sewer on the Fermilab site.
 - We immediately informed the regulatory agencies, our neighbors and employees and the public.
- Levels were, and continue to be, well below already conservatively protective regulatory limits.
 - Highest level has been <20% of limit; the rest are <1% of limits
- We strive to minimize tritium discharges, keep the public informed, and seek input on our plans and goals.
- We have a Tritium Task Force and a new Tritium Management Dept that implement improvements to reduce tritium levels
 - The TTF includes accelerator and engineering experts as well as ES&H and DOE staff

What is Tritium?

- Tritium (³H) is a weakly radioactive form of hydrogen with a half-life of 12.3 years.
 - In nature, tritium is produced when cosmic particles hit the atmosphere.
 - Residual from nuclear tests (pre-1970s).
 - At Fermilab and other particle accelerators, tritium is a byproduct of operation.
- Its decay emits particles of very low energy that cannot penetrate the skin.
- Tritium can only be harmful if people drink water with <u>high</u> levels of tritium over <u>many</u> years.
 - Tritium does <u>not</u> build up in biological tissues; the biological half-life for tritiated water (HTO) is about 12 days.

Tritium: A Byproduct of Accelerators

- High-energy protons hitting or traveling through materials produce tritium (³H).
 - Typical materials used in experiments at Fermilab: iron, concrete, carbon, air, water, etc.
- When protons or other particles hit nuclei in the atoms in materials, they "shatter" these nuclei into pieces.
 - Some are stable, others are radionuclides like ³H.
- Upon exposure to air, the ³H atoms combine with oxygen to make HTO molecules (tritiated water) with the same structure as H₂O (water).

NuMI target hall shield blocks, before horn and target installation (J. Hylen)

Far detector in MN

Tritium Discharges in 2023 Relative to Regulatory Limits

Standards for Surface and Drinking Water

- DOE <u>Surface</u> water limit for offsite discharge: 2,600 pCi/ml (picocuries per milliliter).
- Federal limit for <u>drinking</u> water systems: 20 pCi/ml.

What do these standards mean?

- 1 picocurie (pCi) = 0.037 atoms decaying each second.
- Threshold for measurement is usually taken to be 1 pCi/ml.
 - A user of 2,600 pCi/ml water for their household water source full time would receive a radiation dose of 100 mrem each year. For comparison, a head CT scan creates about 200 mrem (source: NRC). <u>https://www.nrc.gov/about-nrc/radiation/around-us/doses-daily-lives.html</u>
 - A user of 20 pCi/ml water for their household water source is assigned a dose of 4 mrem each year by U.S. EPA.
 - Globally, rainwater is 0.16 to 0.32 pCi/ml due to cosmic rays and leftovers from nuclear weapons tests (ending in 1960s).

How Surface Water at Fermilab Connects to the Community

- 3 creeks leave Fermilab
- The Fermilab site has numerous ponds and is the origin of Indian Creek and Ferry Creek

Fermilab uses water to cool accelerators and other equipment

- Our pond system is part of an "industrial cooling water system" (ICW)
- ~250,000,000 gallons

Surface Water Boundary Results: Indian Creek

- 6 pCi/ml or lower
- Regulatory limit: 2,600 pCi/ml
- Inputs: 1 primary and 3 secondary NPDES outfalls

2400

(pCi/ml)

NPDES Primary Outfall 003_Indiar

△ NPDES Secondary Outfall 004

NPDES Secondary Outfall 005

 NPDES Secondary Outfall 006 Indian Creek at Prairie Path (Site Boundary)

Creek Spillway

https://www.fnal.gov/pub/tritium

DOE STANDARD FOR SURFACE

WATER

Indian Creek 2005-2024

Groundwater

- We must protect Illinois Class I "Resource" Groundwater.
 - Found in bedrock beneath Fermilab (60-90 feet deep).
 - Must stay below 1 pCi/ml in Class I aquifers (i.e, those considered by Illinois to be "useful" for drinking water).
- We design and operate our experiments so that any tritium produced stays out of groundwater.
 - Fermilab employs a hydrogeologist on its staff as an advisor.
- We have never found tritium in Class I groundwater.
 - Eleven bedrock wells are sampled annually.
 - More than 100 wells are measured annually to determine flow directions.

Monitoring Tritium in the Sanitary Sewer

Composite Sampler (to Warrenville system)

> Non-detect (<1 pCi/ml)

Composite Sampler (to Batavia system)

Sanitary Sewer Boundary Results: Batavia

- 2023 annual total activity load was 4.7% of 5 Ci annual limit
 - Beam power was higher than in 2019 but condensate is now:
 - Routed away from sanitary sewer system during periods of high concentration and
 - Shipped offsite for disposal while a new evaporator system is being designed

Data plots online at: https://www.fnal.gov/pub/tritium

Date sample collected

🚰 Fermilab

More Recent Tritium Management Efforts

- In 2019 we finished installation of a canopy and liner over the BNB berm, under which we produce neutrinos for Short Baseline Neutrino (SBN) experiments
 - Infiltration reduced by >90%, which means less HTO is produced
 - First phase of shallow groundwater monitoring wells: all <1 pCi/ml since 2021
 - Additional bedrock wells to be installed and added to sampling program

Tritium Management Efforts: Functional Rather Than Fashionable

PIP-II Cryogenic Building: "Pulsed" proton source pattern

SBN Far Detector Building: Neutrino "spray" pattern

BNB Canopy: Highly-customized "farm shed" including skylight panels, egress doors and a removable section for absorber access, that happens to be ageing well (IMO)

More Recent Tritium Management Efforts

2022 external review of Fermilab tritium management

- Commendations included: BNB canopy, applying lessons learned to LBNF design, public communication
- Recommendations included: expand automated and groundwater monitoring, elevate and expand tritium management and funding, ICW management, etc.

Integration of Tritium M	anagement De	partment and Tritic	um Task Force Subcommitte	e (FESHCom)
Chris Greer	Joel Fulgham* TTF Deputy Chair TTF Advisors		TTF Panel Lead	Resource Staff
TMD Lead and TTF Chair			Accelerators & New Projects	
Morgan Lantz Project Manager Associate			Kamran Vaziri ESH	
Nisarg Patel Radiological Engineer	Matt Quinn <i>SRSO</i> Steve Dixon	inn <u>DIR/LBNF-DUNE</u> kon Rae Moss <i>Communications</i> fers Jim Hylen <i>Retired, Target Systems</i> <i>SME</i>	NuMl Keith Gollwitzer AD	Tony Busch Dali Georgiobani Lee Hammond Adam Taylor
Jeff Vollmer ERPP Manager	PIP-II Mark leffers		BNB	Joel Fulgham*
Christine Salinas* Tritium Monitoring Specialist	ISD		Tom Kobilarcik AD	
Eric Korzeniowski* Env. Monitoring Group Lead	TTF FSO Observers Rick Hersemann		LBNF Tom Hamernik _{LBNF}	Kennedy Hartsfield Mike Andrews
	FSO Rachel Madiar FSO		Water Systems Jonathan Hunt ISD	Greg Gilbert John (JP) Pollock John Wills
* Matrixed in multiple roles	Gumi Mabvuta FSO		Environmental Monitoring Eric Korzeniowski* ESH	Tim Zei Eric Mieland Aish Tikare Christine Salinas*
				娄 Fe

Future Experiments: LBNF-DUNE

Long Baseline Neutrino Facility – Deep Underground Neutrino Experiment

Similar concept to NuMI, but keeping the production of tritium well below regulatory limits is a major focus on the design of this new, higher beam power facility via:

- Excluding, rather than capturing, groundwater along the active Near Site beamline at Fermilab
- Reducing total depth of Near Site construction into bedrock
- Maintaining a nitrogen atmosphere rather than ambient air atmosphere in the target chase during beam operation

Keeping the Public Informed

- We held Environmental Assessment meetings for LBNF/DUNE in 2015.
- We inform the Community Advisory Board.
- We update and post tritium data on our public tritium webpages.
- The DOE Fermi Site Office sends a summary of tritium monitoring results at Fermilab to local officials every year.
- Also publicly available:
 - Annual environmental reports
 - FESHM Chapters
 - Fermilab ESH Manual

Questions for the CAB

Members of the Community Advisory Board are one of Fermilab's connections to the community. As such, we'd like to know:

- How should we keep the community informed and maintain a dialogue?
- Are there specific groups or persons we should reach out to?
- What questions and recommendations do you have?

We strive to be good stewards of the Fermilab site. Please let us know if you have concerns.

Questions from the CAB?

1. ...

