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DOE HEP builds and operates among the most difficult and biggest projects with the most 
complex devices in science -- accelerators and detectors.  Our priority is using AI for real-

time controls, operations, and data processing to accelerate scientific discovery at 
unprecedented data scales while creating enabling technology for society
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High performance and 
throughput compute

Intelligent sensing and 
real-time processing

Operations, controls, analysis

Algorithms for HEP science 
 Robust & generalizable learning; Fast & efficient algorithms; Adaptive & automated learning



AI for HEP
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• Deeper insights & better performance 
Maximize science by getting the most out of machines and experiments; reduce
systematics and understand anomalies

• Accelerate time-to-physics 
Enable powerful/robust ML at each stage of data processing; mitigate computing and
data analysis challenges; automate scientific method and discovery

• Improve operational efficiency 
Optimize experimental “control” via triggers, data monitoring; recover lost data and
physics

Drivers to accelerate discovery



AI organization at Fermilab
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AI Project Office 
(Nhan Tran), head, CSAID 

(Burt Holzman), deputy head, CSAID 
(Farah Fahim), ETD 

(Tia Miceli), AD 
(Brian Nord), CSAID 

(Gabriel Purdue), ETD 
(Tingjun Yang), PPD



Workforce development
• New job type developed for AI research: AI 

associate program

• New job family for advancement at 

Fermilab

• Modeled after industry 1-year internships

• Provides scientific AI research opportunities 


• Primarily Bachelors/MS with background 
in computer science & AI


• Concept emulated in other areas - e.g. 
engineering, quantum

8



Selected AI highlights 





Performance improvement equivalent to 4.2 kilotons 
of additional detector mass with traditional particle 

identification algorithms.

arxiv:1703.03328

https://arxiv.org/abs/1703.03328
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Real-time 
accelerator  
control



13

Real-time 
accelerator  
control

Linac RF optimization 
Predict RF parameters to keep beam energy 

constant and minimize emmitance 

Proof-of-concept with single cavity phase 
regulation; multi-cavity promising
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Real-time 
accelerator  
control
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FIG. 1. Overview of the control system.

FIG. 2. PS Output Voltage.

of the magnetic field, which is an important input to the
GMPS regulator. Powered with the other gradient mag-
nets and housed in a low-radiation environment without
charged particle beam passing through it, this reference
magnet provides an accurate representation of the mag-
netic field under control throughout the accelerator.

Timing information related to ~̇B = 0 synchronizes the
GMPS regulator system to the minimum and maximum
values of the magnetic field and provides a TTL-based
15 Hz master clock signal which drives the timing system
for the rest of the accelerator complex. The minimum
and maximum values of the magnetic field are digitized,
fitted, and used as the primary feedback mechanism for
the GMPS regulator system. Reducing the errors of the
regulation system is of primary concern in the operational
performance and e�ciency of the Booster. The details
of the present and proposed regulation systems will be
discussed here.

B. GMPS Regulation

The present GMPS regulation system seeks to mini-
mize the impact of disturbances due to environmental
factors such as ambient temperature; nearby high-power,

FIG. 3. Existing GMPS regulation loop.

pulsed RF systems; and ramping power supplies with in-
ductive loads. Variations in the AC line frequency and
amplitude are also significant sources of error, and are
due in part to other particle accelerators in the complex
changing currents in their own high-current electromag-
nets as part of their normal operations. Minimization of
these GMPS regulation errors is accomplished with a tra-
ditional implementation of a PID control scheme. Each
cycle, the reference system samples readings of the mag-
netic field at high rate around the minimum, returning
the fitted minimum magnetic field value. This measured
minimum reflects the set point, the compensation applied
by the regulator for that cycle, and any new influence of
other nearby electrical loads. It may be as much as a
few percent. Calculated estimates for the the minimum
and maximum values of the changing magnetic field of
the previous 15 Hz cycle are used to adjust the power
supply program and decrease errors of the system. See
Figure 3 for a block diagram of the existing GMPS reg-
ulation loop.
The environmental errors discussed above increase the

distributed long-term steady-state errors of the GMPS
system. A traditional PI regulation loop, given a su�-
cient amount of time will decrease the steady-state error
of a system to zero. In reality, and within the timescale
of the Booster beam cycle, the PI loop will decrease the
steady-state error to �e. E↵orts to decrease the steady-
state error further by adjusting the closed-loop gains will
come at the cost of overall system stability. Therefore,
a balance between the steady-state error and stability of
the system should be determined. A distribution of mea-
sured errors for the minimum value of the magnet current
can be seen in Figure 4.

IV. DATASET

We amassed a dataset for the Fermilab accelerator
complex to provide cycle-by-cycle time series of read-
ings and settings from di↵erent particle accelerator de-
vices within the Booster. This data contains a small
subset of values for the 200,000 entries that populate the
device database of the accelerator control network (AC-
NET) [26]. Data was sampled at 15 Hz for 54 accelerator
devices that pertain to the regulation of the GMPS dur-
ing two separate periods: from June 3, 2019 to July 11,

Booster GMPS 
Real-time reinforcement learning agent in 

FPGA to regulate Gradient Magnet Power 
Supply; replace a traditional PID loop — shows 

improvement in reward (reduced magnet 
current error) 

Development of digital twin for simulation 
framework
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Real-time 
accelerator  
control

READS 
Real-time edge AI distributed system

Disentangle Main Injector and Recycler 
Ring beam loss with U-Net

Reinforcement learning agent 
to regular Mu2e slow spill and increase 

spill duty factor
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Real-time 
accelerator  
control

NuMI Beam Variable predictions 
Predict the NuMI proton beam position, 

intensity, and horn current 


Goal to reduce neutrino flux systematics
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Computing hardware 
and infrastructure

Real-time AI  
systems at edge

Algorithms for 
HEP science

Operations and  
control systems

Inverse problem for nuclear modeling/tuning

Normalizing flows for accelerating MCs

Fast ML Geant/Detector simulation 

Geometric deep learning 
for HEP data representations

Domain adaptation for robust 
learning (data/MC, faults,…)

Improved reconstruction 
and analysis sensitivity

Uncertainty 
quantification and 
fault tolerance

Anomaly detection and monitoring

Physics-constrained ML; inductive bias

Simulation based-inference
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Huge amount activity cutting across all HEP frontiers




