Ground Floor

‡ Fermilab

The Universe We Can't See

- It is relatively easy to tell if a star is moving towards or away from us (Doppler shift)
- You can calculate how fast the motion should be for different parts of a galaxy because from the brightness of the stars in the middle tells you how big & many stars there are and that tells you how much gravity they should have

The Universe we Can't See

Vera Rubin, 1978

Most of the mass in galaxies isn't in stars - it is some kind of dark matter.

Which we ought to have right here on earth

The Universe we Can't See

Which we ought to have right here on earth And maybe some of it goes through sensors like we have in our cameras

Ground Floor

Warm bodies give off a certain kind of light just because they are warm

🗲 Fermilab

22 Sep 2022

As the universe stretched out (expands) the thermal radiation was stretched out, corresponding to cooler temperatures. Now the universe is about -455°F

Small variations in the universe's thermal radiation are a picture of the universe when it was 370,000 years old – these pictures are steadily getting clearer

22 Sep 2022

HEERC GF Final configuration

